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1. INTRODUCTION

A frequent task in dynamic analysis is to determine the changes in the eigensolutions of
a system after certain modi"cations are introduced. Since a full reanalysis is
computationally expensive even for relatively simple systems such as undamped
non-gyroscopic, undamped gyroscopic and damped non-gyroscopic systems, the reanalysis
for gyroscopic systems with internal and external damping can be much more expensive
and time-consuming [1]. Quite often, the modi"cations are small, and so the perturbation
theory can be applied whereby the unperturbed eigensolutions are used as a basis to extract
the perturbed eigensolutions of the modi"ed system without having to repeat an entire
analysis. For the dynamic analysis of gyroscopic systems with small internal damping,
Meirovitch and Ryland [2] developed a perturbation theory in which the damping matrix
acts as perturbations. Later, they [3] extended the approach to the case of external
damping. The two studies are limited to systems with distinct complex eigenvalues. In
a recent paper, Liu [4] proposed a perturbation technique for dynamic reanalysis of
systems with repeated complex eigenvalues. More recently, Liu [5] put forward a universal
perturbation technique for damped gyroscopic systems with distinct, repeated and closely
spaced complex eigenvalues. In the latter two techniques, complete modal expansion is
needed. For large complicated systems, however, complete modal expansion inevitably
encounters certain di$culties and even leads to great errors under certain circumstances.

This letter presents a matrix perturbation technique for dynamic reanalysis of gyroscopic
systems with internal and external damping. The subspace condensation procedure is
implemented "rst. The lower order perturbations of eigensolutions, i.e., complex
eigenvalues and the corresponding left and right eigenvectors, are determined by solving
two greatly reduced generalized eigenvalue problems. The higher order perturbations of
eigensolutions are then obtained by performing a singular-value decomposition procedure
for a complex matrix. The proposed perturbation method is universally applicable to
general damped gyroscopic systems including all the three possible cases having distinct,
repeated and closely spaced complex eigenvalues. Illustrative examples covering the three
di!erent cases are presented. The perturbed eigensolutions are computed and compared

with the exact solutions.
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2. EIGENVALUE PROBLEMS OF UNPERTURBED AND PERTURBED GENERAL
DAMPED GYROSCOPIC SYSTEMS

The equation of motion for free vibration of an n-degree-of-freedom (d.o.f.) gyroscopic
system with internal and external damping can be written in matrix form as [1]

MM uK#(CM #GM )uR #(KM #HM )u"0 (1)

where MM , CM , and KM are the real symmetric n]n mass, damping and sti!ness matrices,
respectively, GM and HM are the real skew symmetric n]n gyroscopic and circulatory matrices,
respectively, and u is the n-dimensional column vector of generalized co-ordinates.

Equation (1) can be expressed in state-space form

K
0
x"M

0
xR , (2)

where

x"[uR T, uT]T (3a)

is the 2n-dimensional state vector, and

K
0
"C

!(CM #GM )
(KM #HM )

!(KM #HM )
0 D , (3b)

M
0
"C

MM
0

0

KM #HM D (3c)

are real 2n]2n general matrices.
We denote the associated eigenvalues, right eigenvectors and left eigenvectors of the

original (unperturbed) system represented by equation (2) by j
i0

, x
i0

and y
i0

(i"1, 2,2 , 2n). They satisfy the two eigenvalue problems

K
0
x
i0
"j

i0
M

0
x
i0

, i"1, 2,2 , 2n, (4a)

KT
0
y
i0
"j

i0
MT

0
y
i0

, i"1, 2,2 , 2n. (4b)

Without loss of generality, we assume that the solution of equation (4a) or (4b) produces
repeated and/or closely spaced eigenvalues. These eigenvalues can be written as

j
j0
:j

j`1,0
:2:j

k0
, (5)

which means that the original system possesses (k!j#1) repeated and/or closely spaced
complex eigenvalues.

The left and right eigenvectors are bi-orthogonal and can be normalized so as to satisfy

yT
i0

M
0
x
j0
"d

ij
, i, j"1, 2,2 , 2n, (6)

where d
ij

is the Kronecker delta.
To obtain unique eigenvectors, let us consider the normalizing condition

xT
i0

x
i0
"1, i"1, 2,2 , 2n. (7)

The superiority of equation (7) is that it can produce eigenvectors in the form of complex
conjugates. In very special cases, equation (7) may cease to be e!ective, and then another
similar normalization condition can be used instead [4, 5].
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The design changes in a structural system may be re#ected by the changes of K
0

and M
0

in equation (2). Since the changes are usually small, the two updated matrices can be
expressed as

K" K
0
#K

1
, (8a)

M"M
0
#M

1
, (8b)

with the norms of matrices K
1

and M
1

being signi"cantly smaller than those of K
0

and M
0

respectively. This di!erence in magnitude can be used to de"ne an ordering scheme in which
K

0
and M

0
are O(0) quantities, while K

1
and M

1
are O(1) quantities [3].

The eigenvalue problems of the perturbed system and its adjoint have the form

Kx
i
"j

i
Mx

i
, i"1, 2,2, 2n, (9a)

KTy
i
"j

i
MTy

i
, i"1, 2,2, 2n (9b)

respectively. Recalling equations (8a) and (8b) yields

(K
0
#K

1
)x

i
"j

i
(M

0
#M

1
)x

i
, i"1, 2,2 , 2n, (10a)

(K
0
#K

1
)Ty

i
"j

i
(M

0
#M

1
)Ty

i
, i"1, 2,2 , 2n, (10b)

where j
i
, x

i
and y

i
are the perturbed eigenvalues, right and left eigenvectors respectively.

The normalization condition and bi-orthogonality property corresponding to equations (7)
and (6) are

xT
i
x
i
"1, i"1, 2,2 , 2n, (11a)

yT
i
Mx

j
"yT

i
(M

0
#M

1
)x

j
"d

ij
, i, j"1, 2,2 , 2n (11b)

respectively.

3. LOWER ORDER PERTURBATIONS OF EIGENSOLUTIONS

For practical use, the eigenvectors corresponding to the repeated and/or closely spaced
eigenvalues are usually chosen to span two complex eigensubspaces [4, 5]

S"[x
j0

, x
j`1,0

,2 , x
k0

], (12a)

R"[y
j0

, y
j`1,0

,2 , y
k0

]. (12b)

In view of equation (6), we have

RTM
0
S"I, (13)

where I is an identity matrix of order (k!j#1).
Generally speaking, the di!erence between the original (unperturbed) and perturbed

eigenvectors may be signi"cant, but the angle between the original and perturbed
eigensubspaces can be regarded as small [5]. As a result, the orthogonal decomposition of
the perturbed eigenvectors x

i
and y

i
with respect to the original eigensubspaces can be
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written as

x
i
"Sp

i
#dx

i
, (14a)

y
i
"Rq

i
#dy

i
, (14b)

dx
i
oSp

i
, (14c)

dy
i
oRq

i
, (14d)

where p
i
and q

i
are (k!j#1)-dimensional O(0) column vectors to be determined, dx

i
and

dy
i
are 2n-dimensional O(1) column vectors to be determined, and i"j, j#1,2, k. Note

that, for the sake of conciseness, the range of the index i will be omitted hereafter.
Substituting equations (14a) and (14b) into equations (10a) and (10b), using the

variational principle, and neglecting O(2) quantities, we obtain two eigenvalue problems of
(k!j#1)th order

KI p
i
"k

i
MI p

i
, (15a)

KI Tq
i
"k

i
MI Tq

i
, (15b)

where k
i
is an approximation of j

i
, KI "RT(K

0
#K

1
)S and MI "RT(M

0
#M

1
)S.

Inserting equations (14a) and (14b) into equations (11a) and (11b), respectively, and
neglecting O(2) quantities, we have

pT
i
STSp

i
"1, (16a)

qT
i
MI p

i
"1. (16b)

Solving equations (15a) and (15b) and recalling equations (16a) and (16b), we can obtain
(k!j#1) groups of unique eigensolutions: k

i
, p

i
, q

i
. With these, the lower order

perturbations of eigensolutions j
i
, x

i
and y

i
as shown in equations (14a) and (14b) can be

determined. Since there is usually only a small angle between the original and the
corresponding perturbed eigensubspaces, Sp

i
and Rq

i
have errors of "rst order and then k

i
has only an error of second order by the generalized Rayleigh's quotient theorem [5].

4. HIGHER ORDER PERTURBATIONS OF EIGENSOLUTIONS

To "nd the higher order perturbations, the perturbed eigensolutions can be expressed as

j
i
"k

i
#j

i2
#2, (17a)

x
i
"Sp

i
#x

i1
#x

i2
#2 , (17b)

y
i
"Rq

i
#y

i1
#y

i2
#2. (17c)

Comparing equations (17b) and (17c) with equations (14a) and (14b), and considering
equations (14c) and (14d), we have

dx
i
"x

i1
#x

i2
#2, (18a)

dy
i
"y

i1
#y

i2
#2 , (18b)
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x
ir
oSp

i
, r"1, 2,2, (18c)

y
ir
oRq

i
, r"1, 2,2 , (18d)

Substituting equations (17a) and (17b) into equation (10a), collecting terms of the same
order, and neglecting O(3) quantities, we have

(K
0
!k

i
M

0
)x

i1
"![(K

0
#K

1
)!k

i
(M

0
#M

1
)]Sp

i
, (19a)

(K
0
!k

i
M

0
)x

i2
"!(K

1
!k

i
M

1
)x

i1
#j

i2
M

0
Sp

i
. (19b)

Premultiplying equation (19b) by (Rq
i
)T, and considering equations (18c), (6) and (13), we

obtain

j
i2
"

qT
i
RT(K

1
!k

i
M

1
)

qT
i
p
i

x
i1

. (20)

Substituting equation (17b) into equation (11a), we have

(Sp
i
)Tx

i1
"0, (21a)

(Sp
i
)Tx

i2
"!1

2
xT
i1

x
i1

. (21b)

Combining equations (19a) and (21a) results in

Ax
i1
"b

1
, (22)

where

A"C
K

0
!k

i
M

0
pT
i
ST D , (23a)

b
1
"C

![(K
0
#K

1
)!k

i
(M

0
#M

1
)]Sp

i
0 D . (23b)

Using the singular-value decomposition for a complex matrix, we can obtain the
least-squares solution of equation (22) as

x
i1
"A`b

1
, (24)

where the superscript &&#'' denotes the generalized inverse [6, 7].
At this stage, we have obtained x

i1
and then j

i2
by recalling equation (20). Similarly,

equations (19b) and (21b) can be used to "nd x
i2

. Working with equations (10b), (11b), (17a),
(17c) and (18d), and using the same approach, we can obtain y

i1
and y

i2
. The perturbations

of eigensolutions of third or higher orders, even though they are of little practical value, can
also be found by the same procedure as above, provided that the third order terms in the
associated expansions, e.g., equations (17a)}(17c), are retained.

For the case of distinct eigenvalues, i.e., when iOj, j#1,2 , k, the proposed technique is
also completely applicable. In fact, we only need to choose a single right and a single left
eigenvector to span the two eigensubspaces S and R respectively.
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5. NUMERICAL EXAMPLES

The system shown in Figure 1 consists of a mass m connected to a rigid ring through three
dampers and three springs. Axes XI and>I are inertial, and axes X and> are parallel to a set
of axes embedded in the ring. The ring rotates with respect to XI and>I at a constant angular
velocity X. c

1
, c

2
and c

3
are the coe$cients of viscous damping, while k

1
, k

2
and k

3
are the

sti!nesses. The angles between each set of the dampers and springs are 1203. In addition, the
mass m is subjected to external damping forces proportional to the absolute velocities
XI Q and>I Q with the proportionality constant h.

By means of Lagrange's equations [1], we can obtain the free vibration equation of
motion in the same form as equation (1)

MM uK#(CM #GM )uR #(KM #HM )u"0, (25)

where

u"[X,>]T, (26a)

MM "C
m

0

0

mD , (26b)

CM "C
c
1
#1

4
(c

2
#c

3
)#h

!
J3
4

(c
2
!c

3
)

!
J3
4

(c
2
!c

3
)

3
4
(c

2
#c

3
)#hD , (26c)

GM "C
0

2mX

!2mX

0 D , (26d)

KM "C
k
1
#1

4
(k

2
#k

3
)!mX2

!
J3
4

(k
2
!k

3
)

!
J3
4

(k
2
!k

3
)

3
4
(k

2
#k

3
)!mX2D . (26e)

HM "C
0

hX

!hX

0 D . (26f )
Figure 1. A general damped gyroscopic system: a mass connected to a rotating rigid ring through dampers and
springs at 1203 to one another.
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5.1. CASE OF DISTINCT EIGENVALUES

Suppose that the original system has the following parameters:

m"1 kg, c
1
"c

2
"c

3
"0)1 N s/m, k

1
"5 N/m,

k
2
"7 N/m, k

3
"9 N/m, X"h"0) (27)

The "rst two eigenvalues are j
10
"!0)075#2)96012233i and j

20
"!0)075#

3)49663064i, while the eigenvalues j
30

and j
40

are complex conjugates of j
10

and j
20

respectively. Therefore, the original system has distinct eigenvalues. The eigenvalues j
10

and j
20

are listed in Table 1 as O(0) quantities for comparison.
Assuming c

1
"0)15 N s/m, X"0)4 rad/s, h"0)1 N s/m and that the other parameters in

equation (27) remain unchanged, we obtain the perturbed system. The results of the
perturbed eigenvalues calculated by the proposed technique and their relative errors are
listed in Table 1, along with exact eigenvalues for comparison.

5.2. CASE OF REPEATED EIGENVALUES

If the original system has the following parameters:

m"1 kg, c
1
"c

2
"c

3
"0)1 N s/m, k

1
"k

2
"k

3
"5 N/m,

X"h"0, (28)

then there are two groups of repeated eigenvalues. Now supposing that c
1
"0)15 N s/m,

X"0)4 rad/s, h"0)1 N s/m, and that the other parameters in equation (28) remain
unchanged, we have the perturbed system. Table 2 shows the results obtained from the
present technique.

5.3. CASE OF CLOSELY SPACED EIGENVALUES

The characteristics of the original system in this case are taken as

m"1 kg, c
1
"c

2
"c

3
"0)1 N s/m, k

1
"5 N/m, k

2
"k

3
"5)2 N/m,

X"h"0. (29)
TABLE 1

Eigenvalue summary for the case of distinct eigenvalues

O(0) O(0)#O(1) O (0)#O(1)#O(2) Exact

j
1

!0)075 !0)14242515 !0)13611622 !0)13454487
#2)96012233i #2)71638284i #2)74373990i #2)74320557i

(8)190%)* (1)018%) (0)06043%)

j
2

!0)075 !0)13516969 !0)13936644 !0)14045513
#3)49663064i #3)68712480i #3)70842626i #3)70896254i

(5)986%) (0)6053%) (0)03270%)

*Relative errors [5].



TABLE 2

Eigenvalue summary for the case of repeated eigenvalues

O(0) O(0)#O(1) O (0)#O(1)#O(2) Exact

j
1

!0)075 !0)13578823 !0)12377856 !0)12471707
#2)73758562i #2)30241572i #2)33708297i #2)33535541i
(17)83%)* (1)486%) (0)08407%)

j
2

!0)075 !0)14275709 !0)14930673 !0)15028293
#2)73758562i #3)11029706i #3)13286889i #3)13496482i
(12)89%) (0)8217%) (0)07367%)

*Relative errors.

TABLE 3

Eigenvalue summary for the case of closely spaced eigenvalues

O(0) O(0)#O(1) O (0)#O(1)#O(2) Exact

j
1

!0)075 !0)13635794 !0)12470662 !0)12546119
#2)75578936i #2)33874304i #2)37289546i #2)37118448i
(16)34%) (1)441%) (0)07875%)

j
2

!0)075 !0)14209714 !0)14864746 !0)14953881
#2)79184079i #3)14725247i #3)16959811i #3)17164571i
(12)19%) (0)8032%) (0)07033%)

*Relative errors.
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The perturbed system is obtained by setting c
1
"0)15 N s/m, X"0)4 rad/s, h"0)1 N s/m,

while other parameters in equation (29) remain unchanged. The results obtained are listed
in Table 3.

6. CONCLUSIONS

A matrix perturbation technique is presented to deal with the dynamic reanalysis of
general damped gyroscopic systems. The technique can greatly reduce the computational
expense because it avoids a complete computation of large-scale eigenvalue problems. Even
if only part eigensolutions of the original system are available, the perturbation analysis can
also be conducted because complete modal expansion has not been used in the present
technique.

From the examples shown, it can be observed that, in all the three cases of eigenvalues,
the "rst order perturbed eigensolutions obtained by the present method have satisfactory
accuracy compared with the exact solutions, and the second order perturbed eigensolutions
are very close to the exact solutions. Thus, it can be seen that the present technique is an
e!ective universal perturbation technique.
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